1. 基本函数的拉普拉斯变换
原函数 f(t)f(t)f(t)拉普拉斯变换 F(s)F(s)F(s)定义域1111s\frac{1}{s}s1s>0s > 0s>0ttt1s2\frac{1}{s^2}s21s>0s > 0s>0tn (n为整数)t^n \ (n \text{为整数})tn (n为整数)n!sn+1\frac{n!}{s^{n+1}}sn+1n!s>0s > 0s>0eate^{at}eat1s−a\frac{1}{s-a}s−a1s>as > as>ateatt e^{at}teat1(s−a)2\frac{1}{(s-a)^2}(s−a)21s>as > as>atneat (n为整数)t^n e^{at} \ (n \text{为整数})tneat (n为整数)n!(s−a)n+1\frac{n!}{(s-a)^{n+1}}(s−a)n+1n!s>as > as>asin(ωt)\sin(\omega t)sin(ωt)ωs2+ω2\frac{\omega}{s^2+\omega^2}s2+ω2ωs>0s > 0s>0cos(ωt)\cos(\omega t)cos(ωt)ss2+ω2\frac{s}{s^2+\omega^2}s2+ω2ss>0s > 0s>0eatsin(ωt)e^{at}\sin(\omega t)eatsin(ωt)ω(s−a)2+ω2\frac{\omega}{(s-a)^2+\omega^2}(s−a)2+ω2ωs>as > as>aeatcos(ωt)e^{at}\cos(\omega t)eatcos(ωt)s−a(s−a)2+ω2\frac{s-a}{(s-a)^2+\omega^2}(s−a)2+ω2s−as>as > as>aδ(t)\delta(t)δ(t)111s>0s > 0s>0u(t) (单位阶跃函数)u(t) \ (\text{单位阶跃函数})u(t) (单位阶跃函数)1s\frac{1}{s}s1s>0s > 0s>02. 常用性质
(1)线性性质
L{af1(t)+bf2(t)}=aF1(s)+bF2(s)\mathcal{L}\{a f_1(t) + b f_2(t)\} = a F_1(s) + b F_2(s)L{af1(t)+bf2(t)}=aF1(s)+bF2(s)
(2)延时性质
若 f(t)→LF(s)f(t) \xrightarrow{\mathcal{L}} F(s)f(t)LF(s),则
f(t−τ)u(t−τ)→Le−τsF(s)f(t-\tau)u(t-\tau) \xrightarrow{\mathcal{L}} e^{-\tau s}F(s)f(t−τ)u(t−τ)Le−τsF(s)
(3)导数性质
f′(t)→LsF(s)−f(0+)f'(t) \xrightarrow{\mathcal{L}} sF(s) - f(0^+)f′(t)LsF(s)−f(0+)f′′(t)→Ls2F(s)−sf(0+)−f′(0+)f''(t) \xrightarrow{\mathcal{L}} s^2F(s) - sf(0^+) - f'(0^+)f′′(t)Ls2F(s)−sf(0+)−f′(0+)
(4)积分性质
∫0tf(τ)dτ→LF(s)s\int_{0}^{t} f(\tau) d\tau \xrightarrow{\mathcal{L}} \frac{F(s)}{s}∫0tf(τ)dτLsF(s)
(5)卷积性质
若 f1(t)f_1(t)f1(t) 和 f2(t)f_2(t)f2(t) 的卷积定义为:
f1(t)∗f2(t)=∫0tf1(τ)f2(t−τ)dτf_1(t) * f_2(t) = \int_{0}^{t} f_1(\tau)f_2(t-\tau) d\tauf1(t)∗f2(t)=∫0tf1(τ)f2(t−τ)dτ
则拉普拉斯变换为:
L{f1(t)∗f2(t)}=F1(s)F2(s)\mathcal{L}\{f_1(t) * f_2(t)\} = F_1(s)F_2(s)L{f1(t)∗f2(t)}=F1(s)F2(s)
(6)频移性质
eatf(t)→LF(s−a)e^{at}f(t) \xrightarrow{\mathcal{L}} F(s-a)eatf(t)LF(s−a)
(7)初值与终值定理
初值定理:
f(0+)=lims→∞sF(s)f(0^+) = \lim_{s \to \infty} sF(s)f(0+)=s→∞limsF(s)终值定理:
f(∞)=lims→0sF(s)f(\infty) = \lim_{s \to 0} sF(s)f(∞)=s→0limsF(s)
3. 特殊函数的拉普拉斯变换
原函数 f(t)f(t)f(t)拉普拉斯变换 F(s)F(s)F(s)矩形脉冲(u(t)−u(t−T))\text{矩形脉冲}(u(t) - u(t-T))矩形脉冲(u(t)−u(t−T))1−e−Tss\frac{1 - e^{-Ts}}{s}s1−e−Tst⋅u(t)t \cdot u(t)t⋅u(t)1s2\frac{1}{s^2}s211t (t>0)\frac{1}{t} \ (t > 0)t1 (t>0)ln(s)\ln(s)ln(s)4. 一些基本证明
拉普拉斯变换的定义
L{f(t)}=F(s)=∫0∞f(t)e−st dt
\mathcal{L}\{f(t)\} = F(s) = \int_{0}^{\infty} f(t) e^{-st} \, dt
L{f(t)}=F(s)=∫0∞f(t)e−stdt
1. 线性性质证明
如果 f1(t)→LF1(s)f_1(t) \xrightarrow{\mathcal{L}} F_1(s)f1(t)LF1(s),且 f2(t)→LF2(s)f_2(t) \xrightarrow{\mathcal{L}} F_2(s)f2(t)LF2(s),则对于任意常数 aaa 和 bbb:
L{af1(t)+bf2(t)}=∫0∞[af1(t)+bf2(t)]e−st dt
\mathcal{L}\{a f_1(t) + b f_2(t)\} = \int_{0}^{\infty} \left[ a f_1(t) + b f_2(t) \right] e^{-st} \, dt
L{af1(t)+bf2(t)}=∫0∞[af1(t)+bf2(t)]e−stdt
将积分拆分:
=a∫0∞f1(t)e−st dt+b∫0∞f2(t)e−st dt
= a \int_{0}^{\infty} f_1(t) e^{-st} \, dt + b \int_{0}^{\infty} f_2(t) e^{-st} \, dt
=a∫0∞f1(t)e−stdt+b∫0∞f2(t)e−stdt
根据定义:
=aF1(s)+bF2(s)
= a F_1(s) + b F_2(s)
=aF1(s)+bF2(s)
因此,线性性质成立。
2. 延时性质证明
设 g(t)=f(t−τ)u(t−τ)g(t) = f(t-\tau)u(t-\tau)g(t)=f(t−τ)u(t−τ),其拉普拉斯变换为:
L{g(t)}=∫0∞g(t)e−st dt=∫0∞f(t−τ)u(t−τ)e−st dt
\mathcal{L}\{g(t)\} = \int_{0}^{\infty} g(t) e^{-st} \, dt = \int_{0}^{\infty} f(t-\tau) u(t-\tau) e^{-st} \, dt
L{g(t)}=∫0∞g(t)e−stdt=∫0∞f(t−τ)u(t−τ)e−stdt
因为 u(t−τ)=0u(t-\tau) = 0u(t−τ)=0 当 t<τt < \taut<τ,所以积分下限可以改为 τ\tauτ:
=∫τ∞f(t−τ)e−st dt
= \int_{\tau}^{\infty} f(t-\tau) e^{-st} \, dt
=∫τ∞f(t−τ)e−stdt
令 t′=t−τt' = t - \taut′=t−τ,则 dt=dt′dt = dt'dt=dt′,且当 t=τt = \taut=τ 时,t′=0t' = 0t′=0;当 t→∞t \to \inftyt→∞ 时,t′→∞t' \to \inftyt′→∞:
=∫0∞f(t′)e−s(t′+τ) dt′
= \int_{0}^{\infty} f(t') e^{-s(t'+\tau)} \, dt'
=∫0∞f(t′)e−s(t′+τ)dt′
将 e−sτe^{-s\tau}e−sτ 提取出来:
=e−sτ∫0∞f(t′)e−st′ dt′
= e^{-s\tau} \int_{0}^{\infty} f(t') e^{-st'} \, dt'
=e−sτ∫0∞f(t′)e−st′dt′
根据定义:
=e−sτF(s)
= e^{-s\tau} F(s)
=e−sτF(s)
因此,延时性质成立。
3. 导数性质证明
设 f′(t)f'(t)f′(t) 的拉普拉斯变换为:
L{f′(t)}=∫0∞f′(t)e−st dt
\mathcal{L}\{f'(t)\} = \int_{0}^{\infty} f'(t) e^{-st} \, dt
L{f′(t)}=∫0∞f′(t)e−stdt
对 f(t)e−stf(t)e^{-st}f(t)e−st 使用分部积分:
令 u=e−stu = e^{-st}u=e−st,dv=f′(t)dtdv = f'(t)dtdv=f′(t)dt,则 du=−se−stdtdu = -se^{-st}dtdu=−se−stdt,v=f(t)v = f(t)v=f(t):
∫0∞f′(t)e−st dt=[f(t)e−st]0∞−∫0∞f(t)(−se−st) dt
\int_{0}^{\infty} f'(t) e^{-st} \, dt = \left[ f(t)e^{-st} \right]_{0}^{\infty} - \int_{0}^{\infty} f(t)(-se^{-st}) \, dt
∫0∞f′(t)e−stdt=[f(t)e−st]0∞−∫0∞f(t)(−se−st)dt
边界条件:
当 t→∞t \to \inftyt→∞,若 f(t)f(t)f(t) 增长缓慢(指数衰减),则 f(t)e−st→0f(t)e^{-st} \to 0f(t)e−st→0;当 t=0t = 0t=0,f(t)e−st→f(0+)f(t)e^{-st} \to f(0^+)f(t)e−st→f(0+)。
因此:
∫0∞f′(t)e−st dt=−f(0+)+s∫0∞f(t)e−st dt
\int_{0}^{\infty} f'(t) e^{-st} \, dt = -f(0^+) + s \int_{0}^{\infty} f(t)e^{-st} \, dt
∫0∞f′(t)e−stdt=−f(0+)+s∫0∞f(t)e−stdt
根据定义:
L{f′(t)}=sF(s)−f(0+)
\mathcal{L}\{f'(t)\} = sF(s) - f(0^+)
L{f′(t)}=sF(s)−f(0+)
4. 卷积性质证明
设 h(t)=f1(t)∗f2(t)=∫0tf1(τ)f2(t−τ) dτh(t) = f_1(t) * f_2(t) = \int_{0}^{t} f_1(\tau)f_2(t-\tau) \, d\tauh(t)=f1(t)∗f2(t)=∫0tf1(τ)f2(t−τ)dτ,求 h(t)h(t)h(t) 的拉普拉斯变换:
L{h(t)}=∫0∞h(t)e−st dt=∫0∞(∫0tf1(τ)f2(t−τ) dτ)e−st dt
\mathcal{L}\{h(t)\} = \int_{0}^{\infty} h(t)e^{-st} \, dt = \int_{0}^{\infty} \left( \int_{0}^{t} f_1(\tau)f_2(t-\tau) \, d\tau \right) e^{-st} \, dt
L{h(t)}=∫0∞h(t)e−stdt=∫0∞(∫0tf1(τ)f2(t−τ)dτ)e−stdt
交换积分顺序(Fubini 定理):
=∫0∞∫τ∞f1(τ)f2(t−τ)e−st dt dτ
= \int_{0}^{\infty} \int_{\tau}^{\infty} f_1(\tau)f_2(t-\tau)e^{-st} \, dt \, d\tau
=∫0∞∫τ∞f1(τ)f2(t−τ)e−stdtdτ
令 t′=t−τt' = t - \taut′=t−τ,则 dt=dt′dt = dt'dt=dt′,且 t=τt = \taut=τ 时,t′=0t' = 0t′=0,当 t→∞t \to \inftyt→∞ 时,t′→∞t' \to \inftyt′→∞:
=∫0∞f1(τ)(∫0∞f2(t′)e−s(t′+τ) dt′)dτ
= \int_{0}^{\infty} f_1(\tau) \left( \int_{0}^{\infty} f_2(t') e^{-s(t'+\tau)} \, dt' \right) d\tau
=∫0∞f1(τ)(∫0∞f2(t′)e−s(t′+τ)dt′)dτ
将 e−sτe^{-s\tau}e−sτ 提取到外部:
=∫0∞f1(τ)e−sτ(∫0∞f2(t′)e−st′ dt′)dτ
= \int_{0}^{\infty} f_1(\tau)e^{-s\tau} \left( \int_{0}^{\infty} f_2(t')e^{-st'} \, dt' \right) d\tau
=∫0∞f1(τ)e−sτ(∫0∞f2(t′)e−st′dt′)dτ
根据定义:
=F1(s)F2(s)
= F_1(s)F_2(s)
=F1(s)F2(s)
因此,卷积性质成立。
MATLAB编写拉氏变换代码
% 确保你已经加载了 Symbolic Math Toolbox
syms t s a omega;
% 定义一个符号函数 f(t)
f1 = 1; % f(t) = 1
f2 = t; % f(t) = t
f3 = exp(a*t); % f(t) = e^(a*t)
f4 = sin(omega*t); % f(t) = sin(ωt)
f5 = cos(omega*t); % f(t) = cos(ωt)
% 计算各个函数的拉普拉斯变换
F1 = laplace(f1, t, s); % 拉普拉斯变换 f1(t) = 1
F2 = laplace(f2, t, s); % 拉普拉斯变换 f2(t) = t
F3 = laplace(f3, t, s); % 拉普拉斯变换 f3(t) = e^(a*t)
F4 = laplace(f4, t, s); % 拉普拉斯变换 f4(t) = sin(ωt)
F5 = laplace(f5, t, s); % 拉普拉斯变换 f5(t) = cos(ωt)
% 输出结果
disp('Laplace Transform of f1(t) = 1:');
disp(F1);
disp('Laplace Transform of f2(t) = t:');
disp(F2);
disp('Laplace Transform of f3(t) = e^(a*t):');
disp(F3);
disp('Laplace Transform of f4(t) = sin(ω*t):');
disp(F4);
disp('Laplace Transform of f5(t) = cos(ω*t):');
disp(F5);
运行结果为:
Laplace Transform of f1(t) = 1:
1/s
Laplace Transform of f2(t) = t:
1/s^2
Laplace Transform of f3(t) = e^(a*t):
1/(s-a)
Laplace Transform of f4(t) = sin(ω*t):
ω/(s^2 + ω^2)
Laplace Transform of f5(t) = cos(ω*t):
s/(s^2 + ω^2)